Conditional Random Fields for Predicting and Analyzing Histone Occupancy, Acetylation and Methylation Areas in DNA Sequences
نویسندگان
چکیده
Eukaryotic genomes are packaged by the wrapping of DNA around histone octamers to form nucleosomes. Nucleosome occupancies together with their acetylation and methylation are important modification factors on all nuclear processes involving DNA. There have been recently many studies of mapping these modifications in DNA sequences and of relationship between them and various genetic activities, such as transcription, DNA repair, and DNA remodeling. However, most of these studies are experimental approaches. In this paper, we introduce a computational approach to both predicting and analyzing nucleosome occupancy, acetylation, and methylation areas in DNA sequences. Our method employs conditional random fields (CRFs) to discriminate between DNA areas with high and low relative occupancy, acetylation, or methylation; and rank features of DNA sequences based on their weight in the CRFs model trained from the datasets of these DNA modifications. The results from our method on the yeast genome reveal genetic area preferences of nucleosome occupancy, acetylation, and methylation are consistent with previous studies.
منابع مشابه
Qualitatively predicting acetylation and methylation areas in DNA sequences.
Eukaryotic genomes are packaged by the wrapping of DNA around histone octamers to form nucleosomes. Nucleosome occupancy, acetylation, and methylation, which have a major impact on all nuclear processes involving DNA, have been recently mapped across the yeast genome using chromatin immunoprecipitation and DNA microarrays. However, this experimental protocol is laborious and expensive. Moreover...
متن کاملP 110: Evaluating the Role of Histone Hyper Acetylation in Induction of Neuroinflammation
Microglia is the effector cell of the innate immune system in central nervous system (CNS). These cells mediate inflammatory responses in injuries. Besides external factors, microglial function is also controlled by internal factors, including epigenetic regulations. Mechanisms of epigenetic regulation mainly consist of DNA methylation, histone modifications and use of non-coding RNAs. Recent s...
متن کاملEffects of Major Epigenetic Factors on Systemic Lupus Erythematosus
The pathogenesis of systemic lupus erythematosus (SLE) is influenced by both genetic factors and epigenetic modifications; the latter is a result of exposure to various environmental factors. Epigenetic modifications affect gene expression and alter cellular functions without modifying the genomic sequences. CpG-DNA methylation, histone modifications, and miRNAs are the main epigenetic factors ...
متن کاملمکانیسمهای اپیژنتیک و نقش آنها در بروز و درمان سرطان: مطالعه مروری
Both genetic and epigenetic changes are effective in cancer incidence and development. . .Epigenetic processes are alternations of DNA and histones conformations, chromatin remodeling, DNA methylation, post-translational modifications of histones and microRNAs patterns which are associated with genes expression or inhibition of them in cells. Some of reversible epigenetic changes such as DNA an...
متن کاملاپیژنتیک سرطان پستان: مقاله مروری
Stable molecular changes during cell division without any change in the sequence of DNA molecules is known as epigenetic. Molecular mechanisms involved in this process, including histone modifications, methylation of DNA, protein complex and RNA antisense. Cancer genome changes happen through a combination of DNA hypermethylation, long-term epigenetic silencing with heterozygosis loss and genom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006